

- The 'Aina Institute is a 501 (C) (3) Non-Profit Organization
- Established in 1991
- GOAL
- Developing sustainable technology in food production and energy production.
 - Education ,
 - Research,
 - Demonstration ,
 - Technology Transfer
 - Development,

Activities include the application of bioconversion technologies to meet local needs for food, water and energy while maintaining or improving the quality of the environment.

This is a discussion about:

ETHANOL TECHNOLOGY

8

"Waste Our Most Sustainable Resource"

Wasting Waste is Wasteful!

BIOMASS - ETHANOL BACKGROUND

BIOMASS - ETHANOL BACKGROUND

HYDROLYSIS

GLUCOSE

GLUCOSE

Sugar Fermentation

$$CH_2OH$$
 HOH
 HOH

BIOMASS COMPOSITION

(% by dry-weight)

Biomass Source	Sugars	Cellulose	Hemicellulose	Lignin	Other
Bagasse	3	38	27	20	12
Sugarcane ("prepared" cane)	43	22	15	11	9
Sugarcane leaves		36	21	16	27
Sugarcane (whole plant)	33	25	17	12	13
Napier grass		32	20	9	39
Sweet sorghum	34	36	16	10	3
Eucalyptus grandis		38	13	37	12
Eucalyptus saligna		45	12	25	18
Leucaena leucocephala		43	14	25	18
Municipal Solid Waste		33	9	17	41
Newspaper		62	16	21	1

There are major opportunities to produce biomass from waste

- Producing Ethanol from sugar limits opportunities
- Producing Ethanol from corn seed alone limits opportunities
 - Substantial research has focused on producing ethanol from biomass and wastes
 - CO₂ loss in fermentation reduces yields
 - Enzyme cost and performance must be considered.
- Process costs and reliability are still major issues

TECHNOLOGY REVIEW

- A Brief Survey of Biomass-Ethanol Technologies
- A Look at Present and Future Opportunities

ETHANOL PROCESSES COMPARISONS

STATUS OF ETHANOL PRODUCTION TECHNOLOGY									
METHOD	METHOD PRODUCTS		DISADVANTAGES	COMMENTS	YIELD (gal./ dry ton)				
Molasses > Fermentation> Ethanol	Ethanol , Carbon Dioxide, Concentrated Molasses solids	Simple traditional yeast fermentation method	Limited supply- Half sugar becomes carbon dioxide, residue is concentrated molasses solids / may have disposal problem	Depends on Molasses from sugar indstry Lack of efficiency, Only 50% of sugars converted to ethanol	70-80				
Corn> Processing > Fermentation > Ethanol	Ethanol Distillers dried grains Carbon Dioxide	Good for corn industry	Not applicable to Hawaii at this time	Lack of efficiency, only 50% of sugars are converted to ethanol	110-120				
Fiber treatment by acid, ammonia, steam, or solvents to release sugars that can be fermented to produce ethanol	Ethanol, Carbon Dioxide, Lignin (SSF-BCI)	Converts any fiber source including paper and yard waste to ethanol	Half sugar becomes carbon dioxide, residue may have disposal problem	Lack of efficiency, only 50% of sugars are converted to ethanol	50 - 90				
Wood fiber and Carbon containing molecules>gasification> carbon monoxide>with bioconversion>ethanol	Ethanol ,Water microbes	Can use most carbon containing materials that can be gasified to produce carbon monoxide and hydrogen	Depends on performance of microorganisms concerns about stability -reliability of culture	Technologies are not yet demonstrated commercially	80-100				
Wood fiber and Carbon containing molecules>gasification> carbon monoxide/ hydrogen> catalytic conversion >ethanol	Ethanol Butanol Propanol	Can use most carbon containing materials that can be gasified to produce carbon monoxide and hydrogen. Ethanol is produced as a gas	Sensitive to performance of catalyst	Technology not demonstrated commercially	180 +				

WASTING WASTE IS WASTEFUL!